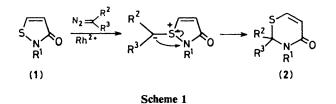
Ring Transformation of 2-Substituted Isothiazol-3(2H)-ones to 3,4-Dihydro-1,3-thiazin-4(2H)-ones by a Novel Carbene Addition-Ring Expansion Sequence

Wilfrid D. Crow,^a lan Gosney,^{b*} and Raymond A. Ormiston^b

^a Department of Chemistry, School of General Studies, Australian National University, Canberra, A.C.T. 2600, Australia

^b Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

Rhodium(π)-catalysed addition of diazo compounds to 2-substituted isothiazol-3(2*H*)-ones (1) results in a ready conversion into hitherto unknown 3,4-dihydro-1,3-thiazin-4(2*H*)-ones (2) in high yield.


Despite the presence of an ambiphilic S-N linkage in mononuclear isothiazoles, their chemistry is characterised by a scarcity of reactions involving ring transformations.¹ Even for the non-aromatic 2-substituted isothiazol-3(2H)-ones (1), which possess a labile S-N bond,² such reactions are rare. Apart from a report of their photoisomerization to thiazol-2-(3H)-ones,³ only two other closely related examples are known. Both involved rearrangement to the dihydrothiazinone ring system of isothiazolones derived from penicillin S-oxides, either under basic conditions⁴ or upon reduction with zinc dust.⁵ We now report that the metal-catalysed reaction of 2substituted isothiazol-3(2H)-ones (1) with diazo compounds is a novel and high yielding method for preparing 3,4-dihydro-1,3-thiazin-4(2H)-ones (2). The ready availability of the starting materials (1)⁶ and the simplicity of the procedure makes the method an attractive route to this little known⁷ class of compounds, the oxygen analogues of which have received considerable attention⁸ because of their biological activity.

The following experimental procedure is typical. A mixture

Table 1. Preparation of 3,4-dihydro-1,3-thiazin-4(2H)-ones (2).

				δ (CDCl ₃)/p.p.m.			
R1	R ²	R ³	% Yield	M.p./°C	H-5	H-6	J/Hz
Et	CO ₂ Me	CO ₂ Me	70	133.5—135 ^a	6.89	7.75	6.0
Et	COMe	CO_2Et	74	120.5—121.5 ^b	6.87	7.45	6.0
Et	COMe	COMe	58	127.5—128ª	6.92	7.50	6.0
Et	-CO·OCMe ₂ O·CO-		74	162.5—163°	7.05	7.62	6.0
CO ₂ Me	-CO·OCMe ₂ O·CO-		95	193—194 ^ь	7.28	8.18	6.0 ^e
Et -	- <i>o</i> -C ₆ H ₄ C ₆ H ₄ <i>o</i> -CO-		91	148149.5 ^d	6.07	6.28	5.8
Et	-COCH ₂ CMe ₂ CH ₂ CO-		65	116117ª	6.93	7.54	6.6

^a Ether. ^b CH₂Cl₂-ether. ^c CHCl₃-ether. ^d Ethanol. ^e Determined for (CD₃)₂SO solution.

of N-ethylisothiazol-3-one (1; $R^1 = Et$) (1.23 g), rhodium(II) acetate (15 mg), and dimethyl diazomalonate (1.42 g) in dry benzene (20 ml) was boiled under reflux for *ca*. 4 h until nitrogen evolution had ceased. Removal of solvent *in vacuo* followed by recrystallisation from ether afforded the pure dihydrothiazinone (2; $R^1 = Et$; $R^2 = R^3 = CO_2Me$) as colourless crystals (1.65 g; 70%). Further dihydrothiazinones similarly produced from (1; R = Et or CO_2Me) by reaction with other diazo compounds are listed in Table 1, together with yields, melting points, and ¹H n.m.r. data. The structure of the products (2) was established from their elemental analyses and complementary spectral data, and in particular, by the presence of distinctive doublet ¹H n.m.r. resonances due to olefinic protons at shifts which compared favourably with literature values for related compounds.⁹

The most likely mechanism for the conversion of (1) into (2) is shown in Scheme 1 and involves the trapping of a carbene or carbenoid species¹⁰ to form an intermediate sulphonium ylide, which undergoes ring expansion by a 1,2-shift. This reaction sequence is notable in that it constitutes a new type of S-N cleavage of the isothiazole ring system induced by carbenes. No products of carbene addition to the double bond were detected.

Similar reactions of the parent compound (1; $R^1 = H$), which is better formulated as 3-hydroxyisothiazole,¹¹ failed to yield a dihydrothiazinone.[†] Instead, (1; $R^1 = H$) reacted preferentially with the catalyst as a bidentate ligand to form a red crystalline rhodium complex [Rh₂(C₃H₂NOS)₄], m.p. 155 °C (decomp.), v_{max} 1630 cm⁻¹.

Received, 28th March 1983; Com. 403

References

- Z. Machón, Rocz. Chem., 1970, 44, 2155; D. M. McKinnon, M. E. R. Hassan, and M. Chauhan, Can. J. Chem., 1977, 55, 1123; J. Rokach, P. Hamel, Y. Girard, and G. Reader, Tetrahedron Lett., 1979, 1281; E. Kawamura, T. Nishiwaki, N. Abe, R. Nakamura, M. Hirayama, and N. Takimoto, J. Chem. Soc., Perkin Trans. 1, 1982, 2867.
- 2 W. D. Crow and I. Gosney, Aust. J. Chem., 1969, 22, 765; Tetrahedron, 1970, 26, 1463.
- 3 J. Rokach and P. Hamel, J. Chem. Soc., Chem. Commun., 1979, 786; see also Y. Maki and M. Sako, Tetrahedron Lett., 1976, 375 for a related photoreaction of an isothiazolone derivative.
- 4 R. B. Morin, E. M. Gordon, T. McGrath, and R. Schuman, Tetrahedron Lett., 1973, 2159.
- 5 D. H. R. Barton, I. H. Coates, P. G. Sammes, and C. M. Cooper, J. Chem. Soc., Perkin Trans. 1, 1974, 1459.
- 6 J. Goerdeler and W. Mittler, Chem. Ber., 1963, 96, 944; W. D. Crow and N. J. Leonard, J. Org. Chem., 1965, 30, 2660; S. N. Lewis, G. A. Miller, M. Hausman, and E. C. Szamborski, J. Heterocycl. Chem., 1971, 8, 571.
- 7 For other methods of preparing 3,4-dihydro-1,3-thiazin-4(2H)-ones, see: M. Yokoyama, Bull. Chem. Soc. Jpn., 1971, 44, 1610; J. Org. Chem., 1971, 36, 2009; Y. Yamamoto, Y. Azuma, and S. Ohnishi, Heterocycles, 1981, 15, 851; M. Yokoyama, M. Nakamura, T. Imamoto, and K. Yamaguchi, J. Chem. Soc., Chem. Commun., 1981, 560.
- 8 T. Kato and N. Katagiri, *Heterocycles*, 1980, 14, 1333, and references cited therein.
- 9 R. N. Warrener and E. N. Cain, Tetrahedron Lett., 1966, 3225; Chem. Ind. (London), 1966, 289.
- 10 For a detailed analysis of metal-catalysed carbenoid reactions, including the formation of sulphur-derived ylides prepared from diazo compounds, see: D. S. Wulfman and B. Poling, 'Reactive Intermediates,' vol. 1, ed. R. A. Abramovitch, Plenum, New York, 1980, ch. 5.
- 11 A. W. K. Chan, W. D. Crow, and I. Gosney, *Tetrahedron*, 1970, 26, 2497.
- 12 K. Tomita and T. Murakami, Jpn. Kokai Tokkyo Koho, 79 20,504 (Chem. Abstr., 1979, 91, 157755).

^{† 3-}Hydroxyisothiazoles have been converted into 1,3-thiazine derivatives by reaction with substituted formamides under Vilsmeier conditions.¹²